Multiple Object Detection and Segmentation for
Automated Removal in Additive Manufacturing
with Service Robots

Pascal Becker, Anastasiia Maklashevskikh,
Arne Ronnau, and Riidiger Dillmann

FZI Research Institute for Information Technology
Haid-und-Neu-Strasse 10-14, Karlsruhe, Germany
{pbecker, maklashevskikh, roennau, dillmann}@fzi.de

Abstract. 3D printing is nowadays getting more important in industrial
production plants, especially in low quantity productions. Currently, al-
most no printer model for fused filament fabrication (FFF) has the capa-
bility to start a new print automatically after the present one is finished.
While the printed object is still on the build plate, the printer cannot
continue and this is noneconomical. Manual work is required to be able
to start a consecutive job. To get one step closer to full automation of the
3D printing process, the removal process should be automated process,
for example with robots.

This approach presents a method to determine the number, positions
and sizes of all printed objects by analyzing the G-code file of the cur-
rent print job. It is determined wether the objects can be removed by
a robotic arm and in which order. Furthermore, a depth camera is used
to verify the hypothesis right after the print process is done. The addi-
tional verification is necessary to detect possible changes in the printed
structures due to errors during the printing process. In the last step the
objects are automatically removed by a robot from the build plate.

Keywords: Automated Removal, Computer Vision, Additive Manufac-
turing, Industrial Robotics, Robots for Industry 4.0, Intelligent Percep-
tion, Applied Robots

1 Introduction

With more need for individualisation and low quantity production 3D printing
is gaining more importance. Long periods of printer inactivity, like waiting for
the removal of the printed objects, are a profit loss for the company. Currently,
almost no printer model uses its sensors, like cameras, to monitor the print
process automatically. Therefore, manual monitoring is necessary to abort the
printing process in time in case of an error or, after the print is completed, to
remove the object from the build plate. To get one step closer to full automation
of the 3D printing process, one should automate the removal process [1]. In
almost all existing solutions for fused filament fabrication (FFF) printing, the

printed objects have to be manually removed from the printing plate or printing
foil. In addition, there is no way to directly check the finished printed objects
for printing errors with these processes.

An application for automated re-
moval of multiple objects needs to be
highly versatile and easy to adopt to
different platforms.

The software can for example rely
on available G-code data to perform
the calculation about the currently
printed objects and their position and
sizes.

However, it is desirable to add in-
telligence to the system, which will
also enable the extension of function-
ality, such as in-process monitoring Fig.1: Using a service robot equipped with
for premature print error detection. a stereo camera and an industrial gripper to
In our approach, a depth camera is verify the hypothesis concerning the printed
mounted at the tool center point (tcp) ob:jects and to u.nload the objects from the
of a robot and used to verify informa- printer automatically
tion and hypotheses obtained from CAD data. The robot is able to move the
camera to different positions for getting the best perspective according to the
current print job as well as to use its gripper to remove the objects from the
build plate.

By analysing the 3D point cloud the hypothesis is confirmed and the object
removal is carried out, otherwise the grasp position is adjusted and in case a
human has to intervene, the corresponding person is notified. The additional
check with an external sensor is needed to verify the hypothesis and the finally
printed objects as the structure might be different from the originally planned
on. This is due to errors like layershift, spaghetti or a clogged nozzle.

Visual data is actively used to solve the problem of grasping both known
and unknown objects. Most model-based methods for grasping known objects
use depth data to segment the objects from the scene and then search the model
database for grasp poses for these objects. If a known grasp is found it is applied
to handle the objects [2].

If there is no model database, the grips have to be computed from the seg-
mented 3D point clouds. Some approaches have been presented, based on the
consideration that similar objects can be grasped similarly. In Aleotti et al.
image segmentation is used to detect objects, build Reeb graphs and classify
objects based on them [3]. In Herzog et al. 3D image segmentation is applied
to build height maps of the objects to be grasped, which are matched with the
stored templates [4]. In Rao et al. 3D image segmentation is used to identify
graspable segments in the scene, determine their 3D shapes, and subsequently
find grasp points [5]. In Moreno et al. 3D point clouds are used to compute local
descriptors that are used to teach a robot to grasp by exploring the graspabil-

ity of the object’s environment [6]. In Mousavian et al. Deep Neural Networks
(DNNs) are used to generate and evaluate multiple 6-Degrees-of-Freedom (DoF)
grasps directly from the 3D point clouds without additional use of descriptors
or other representations of the objects [7]. The centers of mass of the objects
are taken into account to increase the stability of the grasps. The problem of
grasping objects positioned arbitrarily in space, as well as objects whose surfaces
are composed of freeforms, is complicated and continues to be actively explored.

A number of companies have already demonstrated that the removal of 3D-
printed objects from the printer is generally possible. But all of those systems are
specialized to a given setup and not transferable to any other product. In 2017,
Voodoo Manufacturing presented the Skywalker project [8] where a robotic arm
operates several FDM 3D printers. Once the object is printed, the robot removes
the complete build plate, places it in the rack, takes a new empty build plate
from the supply rack and places it in the printer. In the same year, Formlabs
announced its FormCell [9]. In a self-contained system, a robot mounted on linear
axes, operates several stereolithography (SLA) 3D printers that use different
photopolymers depending on the application. When a print needs to be started,
the robot takes a build plate from the rack and inserts it into the printer. After
the print is done, the robot removes the plate, places it in a rinsing device
with the printed objects for post-processing, and finally places the plate in the
rack. Solutions without additional robots exist also partially. In 2017, Stratasys
introduced the Continuous Build 3D Demonstrator [10]. Each FFF printer in
the demonstrator is equipped with a container and the objects are not printed
directly on the build plate, but on a special foil. After the part is finished, the
foil is rolled further and cut off. Still sticking on the foil, the object is falling into
the container for manual post-processing.

BlackBelt products have also been on the market since 2017. The build plate
from a BlackBelt printer is a conveyor belt, which in principle allows infinite FFF
prints as well as prints of more complicated shapes without additional supports
[11]. The removal of the object is also solved by the fact that the object is
pushed further on the conveyor belt and at the end has no contact points with
the printing plate anymore.

In 2018, start-up Triditive presented its solution for FFF printing [12]. At
the center of the complete Amcell block is the conveyor belt. The FFF printers,
which can print both plastics and metals, are placed around it. After the printing
is finished, the complete build plate is pushed onto the conveyor belt line and
transported out. But removing the build plate leads to calibration issues when
a new plate is mounted.

In the same year, Becker et al. proposed a solution in which a lightweight
robot removes objects from printers without having to remove the entire plate
and insert a new one [13]. For this purpose, they also developed a universal
gripper that can grasp objects of different shapes.

In 2019 the NextGenAM project was completed, which was launched in 2017
by Daimler AG in cooperation with Premium AEROTEC and EOS [14]. The
core of the pilot production chain for additive series manufacturing is a four-

laser system for metal-based industrial 3D printing. Since metal powder is used
in a sealed cell, it is difficult to use a robotic arm to remove the objects. For
this purpose, the complete printing cell is moved away by an automated guided
vehicle (AGV) and handed over to further automated components for removing
the remaining metal powder, post-processing and quality control. In 2019, the
IDAM (Industrialization and Digitization of Additive Manufacturing (AM) for
Automotive Series Processes) research project started, also aiming to integrate
3D printing into industrial processes [15]. Even there are some approaches they
either need specially build printing hardware or are only able to handle on object
per print job. In this paper we are going to demonstrate that the segmentation,
detection and removal of multiple objects per print is possible.

2 Approach

Using the whole build plate of a printer by
printing multiple objects at once is effec-
tive and can easily take the printer several
hours until the job is done. But currently
there exists no way to automatically re-
move these objects after a successful print
without using any special printer hard-
ware and to start the next job directly
afterwards. This is done manually until
now.

The proposed approach is able to cal-
culate the position of each object from the
G-code and to move a robot in a way that
all objects are removed automatically one

Fig. 2: Example stl files placed on the

. build plate and the basis for the gener-
after each other. It consists of two aspects: ,toq G-code

Building the hypothesis of the printed ob-

jects based on the G-code and verifying the hypothesis based on a measured point
cloud. Afterwards, the service robot is able to remove consecutively all objects
depending on the hypothesis for each object.

2.1 Determination of the Object Hypothesis based on G-code

Determination of the Amount of Objects The structure of a G-code file
allows very simple extraction of the (X,Y, Z) coordinates belonging to the ob-
jects by using the regular expressions. To find the position of all objects all
(X,Y, Z) coordinates are projected onto the (X,Y") plane. In doing so, the data
set remains meaningful but can be easily clustered by standard algorithms.
Cluster analyses are procedures for discovering similarities in usually very
large data sets. In the context of parsing a G-code file, similarity is defined as
the membership of (X,Y") points to the same object. It is unknown to a robot
in advance how many objects are printed on a build plate at the same time.

MeanShift DBScan OPTICS STL-file
Amount of 2 1 2 (+ outliers)
clusters
Graph
Amount of 3 3 3
clusters
Graph e e [

Table 1: Different clustering algorithms without (top) and with (bottom) the minimum
distance between objects in the G-code file

Therefore, only the algorithms that automatically detect the number of clusters
without passing them as a function parameter are suitable for this recognition
task. Parameters for Birch would have to be entered manually for each print job.
Only MeanShift [16], DBSCAN [17] and OPTICS [18] were found to be suitable.
By iteration, the minimum distance between printed objects should be at least
20 mm on the (X,Y) plane. Table 1 shows the results of clustering with different
algorithms and distance width. In the first row, no minimum distance was set.
In the second case, the minimum distance was 20 mm. During further testing,
20 mm minimum spacing was found to be optimal. With 10 or 15 mm spacing,
clustering still gives wrong results.

Determination of the Camera Orientation To get an optimal camera per-
spective onto the object later on, a suitable camera orientation is calculated
in advance. By means of linear regression a straight line is found which best
approximates the cluster points on the (X,Y)-plane. This can be done by ap-
proximating either all (X,Y") coordinates or, for simplicity, only coordinates of
the cluster centers. Gradient k of the calculated straight lines is approximately
the same in both cases as shown in Fig. 3. The parameter k is adopted for the
positioning of the tcp: the X axis of the camera’s coordinate system should be
as parallel as possible to the calculated line.

Determination of Object Center or Center of Mass In the MeanShift
method cluster centers are calculated automatically, so no additional determi-
nation is needed. Thus, the (X,Y’) coordinates of the respective object center
are already available. When using DBSCAN or OPTICS cluster centers have to
be calculated explicitly. The corresponding Z-coordinate is determined by re-
parsing the G-code file. For this, the search is restricted to the coordinates of

(a) Linear regression on cluster (b) Linear regression on all (c) Linear regression on all
centers points points

v

(d) Linear regression on cluster (e) Linear regression on all (f) Linear regression on all
centers points points

Fig. 3: Difference in gradient for the camera perspective depending on the amount of
objects and their placement

the members of the corresponding cluster, which is possible by determining the
constraints such as Tmaz, Ymazs Tmins Ymin-

After the parsing is finished, (X,Y, Z) coordinates belonging to the object
are available. Extracting the Z-coordinates and adding them to a set leads to
an ascending sorted list due to the structure of the G-code file, in which each
Z-coordinate occurs once. The mean value of this list is the needed Z-coordinate
Zcenter- Combining this with the (X, Y") coordinates of the cluster center provides
the point that the robot’s tool center point is expected to approach for grasping.

However, the object center is not necessarily the center of mass. To increase
the stability of the grip, it is useful to find the object’s center of mass assuming
that the object is not hollow. For this purpose, a coordinate Z,qss € Zop; is
found such that the difference between the sum Sy,4e- 0f the cross-sectional
areas for Z; < Zmass and Soyer Of the cross-sectional areas for Z; > Z,,445 is the
smallest.

Since arbitrary complicated shapes are used, it is not possible to calculate the
exact cross-sectional areas. Therefore, the areas are reduced to the circumscribed
quadrilaterals or circles. For each Z coordinate of the object Timaz, Ymaz, Tmin,
Ymin are determined.

If the area is to be reduced to a quadrilateral, the area is calculated as.
A= (xmam - xmin) . (ymaw - ymzn)
If the area is to be reduced to a circle, the radius of the circle is

_ max((xmax - $min)a (ymax - ymzn))
2

and the area thus
A=mx-r%

Finding Z,,4ss and combining it with (X,Y") coordinates of the cluster cen-
ter, (Xmass, Ymasss Zmass) provides the predicted coordinate for the TCP of the
robot arm.

Determining the Dimension of the Object on the Grasping Plane Af-
ter Zmnass is found, the closing width for the gripper is determined. When the
software stack is started, one of the parameters passed to the G-code analysis is
the height of the gripper’s fingers h.

Let d be the width of the object on the plane Z = Z,,,,5s and h be the height
of the fingers of the gripper. Let d; be the width of the object on Z7 = Z,,,455s — %
and dy be the width of the object on Zs = Z,,455 + % Let the widths ds, ..., d,
be the widths on all Z,, between Z; and Z5 (Z,, € Zop;). The final closing width
for the gripper is then width = max(ds, ...,d,). Fig. 4 and 5 illustrate the need
for this calculation. Fig. 5 also shows why the center of mass should be preferred
to the object center.

The width d; for Z = Z; can then be determined as follows: d; = Xpa0, —
Xmin,i, where (Xpmaz4,Y, Z;) and (Xonin,i, Y, Z;) are points of the object on the
plane Z = Z; and Y < Y455 holds. If the width of the object is allowed, it does
not immediately mean that the center of mass of the object can be approached
by the TCP. If the distance between Ycepter and ymqn is greater than the length
of the gripping surfaces of the gripper fingers, the point to be approached must
be moved along the Y axis.

Determination of the Possibility to Grasp There are mainly the following
situations in the approach, where the removal of an object is not possible:

o If the required closing width width_closed of the gripper minus 16 mm is
larger than the maximum gripper opening, the object cannot be removed.
When approaching the object, the gripper jaws must be opened further than
the object width to avoid collision with the object. A distance of 2-8 mm =
16 mm is included to prevent damage.

o If the closing width of the gripper is smaller than the minimum gripper open-
ing, the object cannot be removed. The minimum gripper opening is 0 mm,
but the distance between the gripper jaws in this situation is not necessarily
0. For the gripper jaws used here, the distance between the gripper jaws in
the closed state is 6.5 mm.

o If the height of the object is less than 20 mm, the object cannot be removed
as the robot could damage the printer by hitting the build plate.

o If the object A with allowed width in the projection on (X,Z) plane is
covered by another object B that cannot be gripped, the object A cannot be
picked either.

If the current grasping scenario does is none of the cases above, the robot is able
to unload the object automatically.

Determing the Order of Object Removal Since the objects are extracted
parallel to the X -axis, the order of extracting the objects based on Y-coordinates
of the object centers can be determined very easily. For this purpose, the Y-
coordinates including labels of the cluster centers are extracted and sorted in
ascending order with respect to Y-coordinates. The resulting sequence of labels
is the order of extraction of the objects.

Creation of the Object Hypothesis After the G-code analysis is finished,
the hypothesis is calculated, which is further verified by the analysis of the point
cloud algorithm. For each object, the following information are merged into one
structure:

o Xmins Xmazs Ymin, Ymaz, Zmaz - array of the object’s edge coordinates in
each of the three dimensions;

o Coordinates of the center of mass of the object in mm - a tuple (X, Y, Z)nass;

o Decision whether the object can be grasped can_grasp - true or false;

center
center

mass

mass

Fig. 4: Example: No possibility to move Fig.5: Comparison of the grasping points
the grasp towards dz,,,,, as the gripper on Zcenter and Zmass: the point on Zeenter
brackets are too wide for the calculated has fewer contact points and is therefore
position less stable

o Coordinates to approach with the Center Point tool in mm - a tuple (X, Y, Z) grip;

o Object width on the grasping plane obj_width in mm;
o Closing width for the gripper width_closed in mm.

The structures for each detected object are arranged in the order of extraction
and, together with the number of objects and the gradient of the regression line,
form a hypothesis message that is passed to the camera data analysis.

2.2 Verification of the Object Hypothesis Based on a Point Cloud

Determining the Number of Objects on the Build Plate The start po-
sition is approached with the camera. A single frame is captured and processed
with the cropbox algorithm [19] which removes all points that are outside a fixed
box. Further, the largest planar components that do not belong to the target
objects are removed and all remaining points are clustered. The number of re-
sulting cluster clouds is the measured number of objects on the printing plate.
If this number is identical to the number from the hypothesis, we can proceed
to checking the tangibility and removal of the objects.

Checking the Graspability and Removal of the Objects For checking the
possibility to grasp, a camera position is approached for each object for which
can_grasp = true. The X-axis of the camera is parallel to the X-axis of the
build plate, coordinate origin of the camera is guided to the X-coordinate of the
object center. Each object should be viewed individually, as smaller objects in
the background may be obscured by the larger objects in the foreground.

After the camera has been moved to the inspection position, a single frame
is again captured and processed as described. Further, only the cluster cloud
containing the points whose X and Z coordinates are in the range of the object’s
boundary points is considered.

It may happen that there are protruding fine details on the proposed grasp-
ing plane, which could possibly break during grasping. To avoid this, the point
cloud should be analyzed for the presence of such details. Experimentally, it was
found that such fine details do not appear in the cluster cloud. They appear as
reflections at the edge of the original point cloud and are thus already removed
during filtering.

First, the width d of the object between Z4;.;, — % and Zgyip + % is calculated
from the cluster cloud. Due to the incompleteness of the point cloud, this number
will differ from the number from the G-code analysis. If d > 0.8 - obj _width, the
object can be grasped as proposed in the hypothesis. If d < 0.8 - obj_width, the
grasping plane is moved down or up one gripper finger width if the possibility
exists. This is necessary as the gripper will not get in contact while closing
otherwise. The object width for the new grasp position is determined from the
cluster cloud. If the object can be gripped on the new gripping plane, it is
removed and moved to the storage location. The procedure is repeated for each
object. If all objects could be removed, it is checked whether the build plate
is empty and then the printer receives the signal that a new print job can be
started.

10

Test #1 Test #2 Test #3 Test #4 Test #5
Number of 3 5 1 25 4
clusters
Gradient of -0.05070884| 0.48840319 | 0.00567 0.003656 -
regression line
Successful true true true true false

Table 2: Test files with multiple objects and different amounts of objects. Tests 1 to 4
where successful, whereas test 5 failed as the objects where to close to each other.

3 Experiments and Results

At first several tests were performed to verify the function of the G-code analysis
module. The range of the number of objects in each G-code file was between 1
and 25, and the range of object sizes was between 10 mm x 10 mm and 80 mm
x 80 mm (width x depth). The object heights were between 10 mm and 15 mm.
In the following tables, results of some experimental runs are presented.

Test file #1 contains 3 objects with freeform shapes of different sizes that have
a minimum distance of 20 mm from each other on the (X,Y’) plane. The order
of extraction was calculated to [2,0, 1] describing the labels of the objects. Data
that the G-code analysis had yielded are listed in Table 2. For the object with
label 2, the center of mass is at Z = 14.45 mm, which is below the threshold of 20
mm. However, the height of the object is 35.15 mm, which is above the threshold
of 20 mm, so the object can be picked after all It should be picked at Z = 20
instead of at Z = 14.45 mm. The analysis recognizes this. For the object with
label 2 (X, Y, Z)center = (134.83,72.21,14.45), (X, Y, Z) 4rip = (134.83,72.21, 20)
was finally calculated.

Test file #2 contains 5 objects, all of which have the same model, but have
been merged into the STL file at different sizes. On the (X,Y") plane, the min-
imum distance of 20 mm is also observed. The order of removal was calculated
to be [0,1,2,3,4].

Test file #3 contains one object of a simple shape (block) which depth is much
greater than its width, so the distance between the ycenter and ymin is greater
than the length of the gripper jaws. For the object 75 mm < (Ycenter — Ymin =
102 mm) and Zeenter < 20 mm, therefore y,,4, as well as zq4,;, are adjusted.

The test file #4 contains 25 equal cubes with 20 mm x 20 mm placed in 5
rows of 5 cubes each with a minimum distance of 20 mm. All 25 objects were
detected by the G-code analysis. They should be grasped at zgpip = 20 mm.

Test file #5 contains 9 cubes: 10 mm x 10 mm x 10 mm, placed in a row
with the spacing of around 5 mm. The G-code analysis detects only 4 objects,
clustering multiple cubes into one object. The wrong result of clustering leads
to a wrong hypothesis.

11

Left perspective Front perspective Right perspective

Original cloud

Number of detected objects
5 9 6

Table 3: Tests objects of different form and amounts to check the filter results and the
amount detection

Visual Data Analysis The verification of the hypothesis as well as the gras-
pability were tested on several sets of objects. The test runs were performed on
sets of objects whose arrangement on the printing plate require different starting
positions. Table 3 shows the images of three test scenes and the corresponding
filtered point clouds. In all tests the number of objects was successfully detected.

Examination of graspability In this test, object #1 from test #1 was printed
and the information known from the G-code analysis were passed to the robot as
well as to the CountObjects service. The test position was approached and the
service was invoked. For clarity, resulting point clouds were saved and visualized.
On the cloud filtered with CropBox (Fig. 6a) it is easy to see that the thin
fine parts of the object cannot be found in the point cloud due to the sensor’s
limitations. Next, the planar component of the point cloud was removed and the
object was presented as a cluster cloud (Fig. 6b). The coordinates x¢p as well as
Ytep, Which were calculated by the G-code analysis, were used to determine if the
cluster belonged to the object of interest. The cluster cloud was then cropped
(Fig. 6¢), and the width was calculated.

The width calculated by the G-code analysis was 40 mm. The width measured
in the point cloud was 39 mm, which is 97.5% of the value from the G-code
analysis. Thus, the object can be grasped as calculated in the hypothesis.

Full System Test To evaluate the whole approach all presented methods where
tested together. After a successful generation of the initial hypothesis, this was
verified with the point cloud and the calculated grasping point was given to the

12

(a) Point cloud filtered with (b) Object segmented from the (c) Area for investigation of
CropBox point cloud graspability

Fig. 6: The point cloud is pre-processed in multiple steps to get the best possible input
for the graspability algorithm

(a) First, moving the robot to (b) As soon as the robot reaches (c) The object is grasped with
the printer before moving to the the calculated camera position the calculated gripper width to
calculated camera pose the grasping width is calculated prevent damage

\

(d) The object is removed by ro- (e) Moving the robot to the stor- (f) Successfully removed the ob-
tating without any damage to age position and opening of the ject from the build plate and
itself or the printer’s built plate gripper to release the object waiting for the next job

Fig. 7: Image sequence of the different intermediate steps of the presented approach to
automatically remove printed objects

grasping mechanism. This moved the robot with the correct gripper opening
width to the correct point and closed the gripper. Afterwards the object was
placed at the storage position. The tests were successful and all objects were
removed without any damage. Fig. 7 represents different steps of the whole
system test.

4 Conclusion and Outlook

This work represents a method for removing multiple objects from a 3D printer
using a robotic arm was developed. The method consists of two parts: a G-code
analysis to generate the hypothesis for future removal, and a camera data analy-
sis to verify this hypothesis. Both parts were tested extensively both separately
and in collaboration. A robot is used to move the camera to an optimal viewing
point as well as removing the printed object with its gripper.

13

During several tests, the G-code analysis proved to be stable and provided
good results. The placement of the objects must also take into account the width
of the gripper jaws and a distance for each gripper jaw.

Whether the analysis of the camera data for counting the objects gives cor-
rect results depends on the quality of the 3D point cloud. In most cases, the test
results agreed with the expected results. However, if the objects are too close to
each other and/or overlap from the camera’s point of view, in some cases they
are detected as a single object. This could be solved, for example, by using dif-
ferent hardware or a change of the perspective according to the current scenario.
Calculating the width of the object gave mostly stable results, but again the
quality of the point cloud plays a major role.

On the one hand, to get a better point cloud, in the future, one could take
several shots of the printing plate with objects from different angles and merge
the resulting point clouds to get a more complete point cloud. On the other hand,
the use of better sensors can improve the quality of the point cloud. However,
the object width check must be adjusted, otherwise there is a likelihood that fine
parts that should be removed will be assigned to the object point cloud after all.
The adjustment can be done by using morphological operations like erosion and
dilation in 3D. The difference between the object widths before erosion and after
dilation is then the basis of the statement whether the object can be gripped on
the calculated grip plane.

Currently, the 3D image of the scene with the printer and objects is cropped
with CropBox filters, leaving only the printing plate and objects in the point
cloud to be analyzed. Although this is currently sufficient, it will be improved in
the future to be able to set the filter correctly for all possible camera positions.
Another possibility is to create a RANSAC [20] model for the body of the 3D
printer so that SACSegmentation can capture and remove the points that belong
to the printer (frame, axes, display, print head). If creating such a model is not
possible, one can try to match the 3D model of the printer with the point cloud,
identify the printer in the point cloud this way and remove it from the point
cloud. Overall this work presents a chance of an easy integration of a service
robot in an already existing additive manufacturing plant as there is almost no
need to change the existing hardware.

References

1. A. Weber, “Additive Manufacturing: The Quest for Automation,” 2019,
[Online]. Available: https://www.assemblymag.com/articles/95074-additive-
manufacturing-the-quest-for-automation.

2. A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, J. Bohg, T. Asfour, and
S. Schaal, “Learning of grasp selection based on shape-templates,” Autonomous
Robots, vol. 36, pp. 51-65, 2014.

3. J. Aleotti and S. Caselli, “A 3d shape segmentation approach for robot grasping
by parts,” Robotics and Autonomous Systems, vol. 60, pp. 358-366, 2012.

4. A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, T. Asfour, and S. Schaal,
“Template-based learning of grasp selection,” in 2012 IEEE International Confer-
ence on Robotics and Automation, 2012, pp. 2379-2384.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

D. Rao, Q. V. Le, T. Phoka, M. Quigley, A. Sudsang, and A. Y. Ng, “Grasping
novel objects with depth segmentation,” in Proceedings of the 2010 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, Taipei, Taiwan, October
18-22 2010.

P. Moreno, J. Hornstein, and J. Santos-Victor, “Learning to grasp from point
clouds,” Department of Electrical and Computers Engineering, Instituto Superior
Técnico, Portugal, Tech. Rep. Vislab-TR001/2011, September 2011, (technical re-
port).

A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational grasp gener-
ation for object manipulation,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 2901-2910.

C. Scott, “Voodoo Manufacturing Tells Us About Automating 3D Printing
With Project Skywalker,” 2017 (abgerufen am 16.07.2020), [Online]. Verfiigbar:
https://3dprint.com/167938/project-skywalker-voodoo/.

. Form Labs, “Form Cell: Ein Blick in die Zukunft der Produktion,” (2017), [Online].

Available: https://formlabs.com/de/3d-printers/form-cell/.

Stratasys, “Meet the Stratasys Continuous Build 3D Demonstrator,” 2017, [On-
line]. Available; https://www.stratasys.com/de/demonstrators.

S. Schiirmann, “Blackbelt 3D Printer,” 2017, [Online]. Available:
https://blackbelt-3d.com/.

S. Goehrke, “TRIDITIVE’s Fully Automated 3D Printing System,” 2018,
[Online]. Available: https://www.fabbaloo.com/blog/2018/12/27 /triditives-fully-
automated-3d-printing-system.

P. Becker, E. Henger, A. Roennau, and R. Dillmann, “Flexible object handling
in additive manufacturing with service robotics,” in 2019 IEEE 6th International
Conference on Industrial Engineering and Applications (ICIEA), 2019, pp. 121—
128.

M. Grebner, “NextGenAM Automated 3D Printing a Complete Success (press
release),” 2019, [Online]. Available: https://www.eos.info/en/press-releases/next-
gen-am_serial-3d-printing_project-end.

P. Nolis, “BMBF-Forschungsprojekt IDAM: Netzwerk bringt metallischen 3D-
Druck auf automobilen Serienkurs (Pressemitteilung),” 2019, [Online]. Avail-
able: https://www.research-news.org/2019/04/17/bmbf-forschungsprojekt-idam-
netzwerk-bringt-metallischen-3d-druckauf-automobilen-serienkurs/.

Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEFE transactions on pat-
tern analysis and machine intelligence, vol. 17, no. 8, pp. 790-799, 1995.

M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.” in Kdd, vol. 96, no. 34,
1996, pp. 226-231.

M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: ordering points
to identify the clustering structure,” ACM Sigmod record, vol. 28, no. 2, pp. 4960,
1999.

R. B. Rusu and S. Cousins, “PCL API Documentation,” [Online]. Available:
http://pointclouds.org/documentation/index.html.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,” Commu-
nications of the ACM, vol. 24, no. 6, pp. 381-395, 1981.

